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NASA TT F-9334

THE RAYLEIGH-RITZ METHOD WITH HERMITIAN INTERPOLATION */149
POLYNOMIALS
S, Falk

;236'7/"
Hermitian interpolation polynomials are applied to the de-
velopment of admissible or comparison functions for the Ritz
method, for simplification of the calculation of elastically
supported beams, harmonically vibrating at constant pressure
(two~parameter eigenvalue problem)., For differential equa-
tions with constant coefficients, ready-made integration
matrices are given such that the entire method is reduced
to a mere multiplication of matrices and, consequently,

readily programmed on digital computers, //“\
1. Mathematical Principles /fg, Tﬁi@__/

Given is the linear ordinary differential equation of the order 2n in the

so-called self-conjugate form
"i[y] = (DO Y)Y — Gy gy =T (1.1)
with logical functions g,(x) and r(x)}* and 2n linear boundary conditions for
x = 0and x = 4, in the form of
(1.2)

where h, and b, denote the vectors of the boundary derivativesie*

* Numbers in the margin indicate pagination in the original foreign text.

¥ Details for this case and for all problems in this Section are given by
Collatz (Bibl.l).

Ry

The symbol * indicates transposition of a matrix or of a vector,
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(08 = ot i), ‘
W= v YE, - YR, (1.3)
and where R, and R, are two square matrices of the order 2n, Of the rectangu-
lar total matrix
(1.4)
it is required only that column regularity exists, i.e,, that linear independ- |
ence of the boundary conditions (1.2) is present, If the two boundaries are

not coupled, eq.(1l.2) will have the special form

(1.5)

. Which, however, is of no importance for what follows,

Now, let 1 = Tl + I, be a certain “energy expression" (in mechanics, for
example, Tl = W - A where W is the work of deformation and A the work done by
the load) where I; is due to the discrete boundary values and I, to the continu-
ous deposition in the field O < x < {4, Both components are assumed to be at
most quadratic in the functions y, V' T eee, y(“), respectively in their

boundary derivatives combined into the vector

(1.6)
at the points x = 0 and x = 4: /150
1 . P ' f (1.7)
I = -; 0f ™ o+ Yyt gy de— [ryde + [ [de ‘
& 0 0
1
My= 53 Us—s* t+[e ot A=, . (1.8)

1f, then, the expression Tl = M, + I, is made into the extremum with reference
to all admissible functions y(x) - these are functions that satisfy all im~
portant (geometric) boundary conditions ~ , then the expressions

L{gi— r =~ 4 (1.9)

satisfaction of the residual (dynamic) boundary conditions (1.10)
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are necessary conditions for the wanted extremals; this fact was utilized by
Ritz in the following manner: First, the energy term I, by means of a linear
- argument
Y) = ay 0,(T) 5+ -+ 5 4, V(X)) -+ dvysq(T) l (l.ll)
of radmissible functions v,(x) with still free constants a, but fixed d is \
transformed into an equivalent energy T consisting of quadratic forms and scalar

products. If eq.(1,11) is abbreviated to

gy = 0¥ 0@ \ | (1.12)
with R, 00"
e (1t (e - oo e d) ‘ r&:m =
. and
V) = (0(x), o), .. 0): U (@) | I )

then a substitution of eq.(1.2) into eq.(l.7) will yield directly

1 o ; !

77 i 43 v} 4 1 "

Il = —- X | g, a* 00 00" . de — } ra*vde + | fdr =+a* Y@ a—a*1 - [,
’ ’ 2 r=0 ‘(1015)

Y]

with i ; £ l|' - ¥ L4 . ) " 3 'f‘ |
®, = 0{ $(T) 0O () v () - da; =,.‘3.‘0 ®, ’ (1.16)
1
v J (@) de | (1.17)
1 ;
Jx =0f/(.r) dx = consl . ‘ (1.18)

The energy T, [eq.(1.8)] has been transformed by the argument (1.12) into

\
=~ T .~ : ) !
1= SO Fa—a*3 4/,

(1.19)

which means that the total equivalent energy will then read

ﬁ:imﬁﬁﬁmwafwanwa+mfm+m, (1.20)

This equivalent energy was used by Ritz for the extremum with reference to the

still variable coefficients a,:




~

grad /[ = grad I, - grad I = (fy a—3) -+ ((;} a—1) =0 (1.21)

or i

Ear_:@%@)a:f?—:f,r | (1.22)
where the symbol ~ means that the last rows of the matrices §f and @ as well as |
the last element of the vectors & and ¥ must be deleted since 4 had been a
fixed constant, Thus, the linear system of equations (1.22) represents a finité
transposition of the differential equation (1.1). 1If the coefficients a, are
calculated from eq.(1.22), then the extremal of the equivalent problem will be
available, according to eq.(1l.11), as a function of x,

Of special interest is also the so-called holohomogeneous case: since
r(x) = 0 in eq.(1.1) and ® = O in eq.(1.2), it follows that d = O in the argu- |
ment (1,11) and v = O in eq.(1.17). Similarly, t in eq.(1.8) will also vanish,
So as to have any nontrivial solutions exist at all, at least one of the dif-
ferential expressions on the left-hand side of eq,(1l.l1) must contain a factor ),

so that eqs.(1l.1) and (1.2) can be written in the form of /151

Liy] = M{y} — 2 N[yl =0, (1.23)
No Yo+ Ny, =0 (1.23)
In that case, generally «' discrete eigenvalues )\, with the corresponding
eigenfunctions y,(x) will exist, The eigenvalues are real and positive if the
differentiai expressions
M{y] and N‘['y]i (1.25)
are symmetric and positive definite., The finite transformation of eqs.(1.23)
and (1.24) will then read
La=Ma—ANa=0, (1.26)
and the corresponding characteristic equation

E\JR_A;)\H =[)(A) :—‘S(,AQ ——. e ——‘.—32‘/‘1‘-‘-_“—81/1“:—5‘0:0 i (1 27)




will then yield p approximation eigenvalues A, which also all are real and posi-
tive since the linear argument (1.2) transfers the properties (1.25) also to

the matrix pair Bt; %, If the wanted eigenvalues A\; and the approximation
values A, are arranged in order of magnitude, the following will apply under
the assumptions of eq.(1.25):

-y foll_.IQ,,, - o - ' (1.28)

A single-term argument y(x) = a,v,(x) will change eq.(1.26) into the expression

; A PP
(my—An)a =0 lee,,.i = ,—-‘A- 21/ 4 arbitrary,

i (1.29)
In this form, A is known as the so-called Rayleigh quotient (called also "energy
quotient™ in the technical literature), In conclusion, we assemble the entire

method schematically:

Given Problem Equivalent Problem

/
n

!
1 Lo
= - N ')’ —
m, 2%[9,3/‘ dx frJ(ItTfdei Argument - I,
0 0

1 ) =@ |
M=z Ug—3* 1+ ] lﬂw
The requirement
II = I, + I, = Extremumn ‘ IT - T, — [T, = Extremum
with reference to all
permissible functions y(z) | variables q
leads to the necessary condition
ol = oIl — oIf; = 0 I gradi T -- grad .+~ dgrad I,=0
l.e., to

‘v —

ks "O a—a*x—-f/dt

—

carya—a*3 = fy

o

the linear differential equation the linear system of equations

Lyl= -~ @y — @) =gt =1 |La=(+0+8+8+FPHa=t+3
(and residual boundary conditions).

In the holohomogeneous case, we have

Liy)= M[y] —+N[y] =0 La=RNa—ANa =0,
‘(and homogeneous residual boundary
conditions) and thus

(conttd)




0i = A for i=1,23,...,0,
if
the differential expressions : the matrices
Mf[y] and N[y] v IR and N
~are symmetric and positive definite.
|
It should be specifically taken into consideration that the dynamic [152
inhomogeneity of the boundary conditions (individual forces, etec,) not only
enters the energy term T, and thus the vector 8 but also all matrices @v if
comparison functions are selected (but not in the case of only admissible
functions), whereas the inhomogeneity of the differential equation (tensile
load, etc,) is expressed uniquely in the vector t. Conversely, a geometric
inhomogeneity may appear in the energy‘ﬁ (for example, elastic support with
prestressing) or may not appear in it (for example, permanent support sag); in
any case, the inhomogeneity will enter the last rows of all matrices @v over

the constant d [eq.(1.11)], no matter whether only admissible or comparison

functions are selected,

2. Hermite Interpolation Polynomials

2
A Hermitian polynomial H?(g) of the order 2o (and thus of the degree 2o -

- 1), is here defined by the property that, of the 2¢ values

{H‘-V(O;, I0), HI©) ..., HE=(0), (2.1)

Hi(1), Hi(1), H (), ..., H&=(1)
all vanish except for the 1%h value which is equal to 1,
The totality of all Hermite polynomials of a permanently selected order 2o

is written as follows:

PE =y (2.2)




with the coefficient matrix

“a %
- La
.3(‘.‘ ]

“m

Lot
=

and the vector

-
w

& (1: Sy s“-'z

r e L.

Fig.1 Hermite Polynomials of the Order 2o = 2

(Straight Lines)

e

Y

/
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Fig,2 Hermite Polynomials of the Order 2o = |

(Cubic Parabolas)

(2.3)

(2.4)



20
For ¢ =1, 2, 3, and 4, the matrices & are compiled in Table I, The course of

all these polynomials in the - zero-free! - interval 0 < £ <1 is plotted in

Figs.l - f.

Fig.3 Hermite Polynomials of the Order 20 = 6
(Parabolas of the 5th Degree)

It is known that the polynomial

{ U(E)ZfJoffz_(f) %—:!/6{12(15) e ~ !/:;“_f’lla(_S) o (2.5)
T Haia@) -y Haso(§) - - oD Hy (8)

has the property, exactly required for deriving an admissible or comparison

function, of explicitly containing all boundary derivatives occurring in

eq.(l.3). However, also the higher derivatives are readily obtained by a /153

comparison with a Taylor series at the points € = 0 and € = 1, For the left-

hand boundary, the following is valid:




2a 24 l

(2.6)

yM=nlfyyfor n=20,1,2,...,20—1
with |
3= Yo Yo' ¥V g Yi L yETY) \ (2.7)
and, similarly, for the left-hand boundary,
2a 2a
. ym=n! ffwforn=01,2....2a—1 (2'8)5
with . v
W= (— (g — g = e g — g gl (— 1) g (2.9)
77
1 ‘
1 \\'i
Fig.l, Hermite Polynomials of the Order 2o = 8
(Parabolas of the 7th Degree)
Consequently, here the indices O and 1 must be permuted with respect to (154

eq.(2.7),and the odd (even) derivatives for n = 0, 2, 4, 6...(n =1, 3, 5, ...)

must be provided with negative signs,



TABLE I

2 4 5] 8
HERMITE POLYNOMIALS H, (£), Hy(E), Hy(E), and H (E)

1 5 s 4:3 ‘
/s 1 ¢ AT R R A :
2 Y 1 —1\() . l/) o 1 —2 1y
p(§) = \ﬁ‘> =| ) o, P& = ! Pt I R . () '
o .0 1/ () ity 0 0 3 —2] ()
4
b, b o —1 on
R S A g
1, 1 0 ¢ —10 5 =6 ()
G
) o 1 0 — % s —3
ﬂ 1 3 3 1y,
) I, 0 0 Rt 5 = (73"
=1, = !
) i, 0 0 0 10 — 15 6 I (0
7 1 S T T =3 )
6 H 2 1 ‘e
Hy 0O 0 0 = —-5 ‘il\ﬂx) :
1 ;: ;:.. 53 ;l SO ;’:G ‘;'7
8 / ) ;
1, I 0 0 0 —3 Si —70 20! () :
R .
I, 6 1 0 0 —x20 " —36 10y ()
. 1 10 20 15 i %
1, 00 4 0 —-5 & —5 )
. ; 1 4 6 4 1 » !
5 i, 00 0 gy vTw W @ \
p(,)= ) T T . . e ;
o0 o 0 0o 0 35— 00 —20! () w
g o 0o o 0 —15 39 —34 10] (y1)
. 5 14 13 4
i, 0 0 0 0 = T )
8 1 3 3 i [ L s
Hy 00 00— vTw v

3. Variation of the Boundary Values

We will construct our argument function (1.11l) from nothing but Hermite
polynomials of the same order 2« according to eq.(2.5) and then vary those 2n
boundary values that do not vanish because of the boundary conditions (1.2) or
that are linearly combined by the remaining conditions; the quantities a, thus
will have obtained a simple geometric or mechanical meaning, Despite the fact

that the theory for the Ritz argument (1.11) merely stipulates admissible

10



functions v, (x), numerically satisfactory results will be obtained only - speci-
fically in multifield problems - if comparison functions are utilized: Such
functions are those that satisfy not only the essential but all 2n boundary
conditions (1.2).
Using the new dimensionless variables
_x dy _y &y oy &y gy f
=T LT wiTE aw T w | o (3.1)

where the symbol ' denotes a derivative to §, we will have to establish for

n=1, i,e,, for the differential equation

Liy} = — (1) y @) + 94(8) y(&) = r(®) (3.2)
the following argument S %

4 4 4 4 ’
Y(E) = yo Hy(&) + 1o 1) + yy Hy(§) + yiy H(&), (3.3) |

whereas for n = 2, i,e,, for

Lyl (99 v @) — () y' @) + 909 = r(¥) (3.4)

the following argument must be used: /156

) . 3 3 3
{ YE) = Yo F®) + 1o 118 + vt IL(E) + y” (&) 6.5)

B + i O + y I = 1 Q)
Only in exceptional cases do the boundary conditions (1.2) require that, of the:
In quantities (1.3), simply half must be cancelled; in general, however, the
boundary values must be linearly combined, This leads to the fact that, at
each of the variables a,, we have not only a Hermite polynomial but also a
linear combination of the form
0i3) = by H(E) + b FLEY + -+ o+ bu Honl®), | (3.6)
or, in abbreviated form, ‘
(&) = bF p(&) (3.7)
Thus, the argument (1.12) will read

Y€) = a* w(s) ~ a* pE) , (3.8)

11



TABLE IT

INTEGRAL MATRICES FOR HERMITIAN POLYNOMIALS OF THE ORDERS 2o = 2, 4

1

. /6 3o--6 3
2 z/ 3 0 0 .l /
’ H H{ di 9y =( ) 1,1 o oss0] 03 2 —3 1
” " ge o oY .

J 0 0 ‘ HiHdE Dy N, \_u —3 5 3
| ‘ 0 3 1 —3 2
0 1 {36 3 —36 3
N 2; 2, .~ 2 l — l 4 4 4 14 '; 4 — 3 — l

H:Hpdé Dy =  fas _ 14 ;
’ i s Yio (__ 1 1) ‘{ I 1 dé§ 1o Yl—36 —_3 36 —3
i o 3 —1 — 4

) ' 156 2

54 —13

")
g ) 2 12 1 Lo s 1 22 4 13 — 3
C Ho Hy dE ) = e Il Hi. dE 3 =
ﬁ Heds Y=g (1 2) { s D=l 5y 13 ime —22
0 “ —13 —3 —22 4
1
! 1
2 Ciids B =6 1 o 1)
I ids Ny = o ) —
| ’ Hidi  By=-( 1 P =y
i v
R -
1 - B .
! 1 2 3 4 ) 6
: [ 1200 600 50 —1200 900 —30) 1
1 ! 800 384 22— §00 216 o
e, s 2 22 2 — 8] 2
’ i dp g G, <72 30 22 6 — 30 s 1l 3
J Voo |—1200  —g00 a0 1200 — 600 30] ¢
; 00 216 35— 600 384 —22| 5
| l— 30 — s . 30 — 22 6) 6
2 3 4 b 6
270 15 —1800 270 —15) 1
288 21 — 2710 — 18 6} 2
20 2 — W — 6 13
—270 —15 1800 —270 15| 4
18 — 6 — 270 288 —21| &
: 6 i 15 — 91 2] 6
1 2 3 4 > 6
‘ {21720 3752 281 6000 —1812  181] 1
1 3732 $32 69 1812 — 532 52| 2
[;}ijikd;c o0 = < - 251 69 o 151 — 52 5| 3
| N, 6000  1sI2 181 21720 —3732  281] 4
Y —1812 — —52 —3732 $32  —69|
; | 1 52 3 281 — 69 6 6
o
| £ 6 462
, | Hidé 1;0=~\;. (.60 12 i 60 —12 1)
i “Ye
: a
; Ne=5-79-11+16 = 53440

12




INTEGRAL MATRICES FOR HERMITIAN POLYNOMIALS OF

TABLE ITI

THE ORDER 2o = 8
1 2 3 4 3 6 7 8
352 00 76400 16800 630 -—332800 176400 — 16800 630) 1
1 176400 - 108000 11370 480 —176400 08400 — 5430 150 2
8 R . oy - g - -
f”‘””’l‘ ge | 16500 11370 3000 140 — 16500 5430 — 30— 253
630 480 140 8 — 630 15 25 — 3|4 ;
° . ogq | 392800 —176400 —16800 — 630 352800 — 176400 16800 — 630} 5 :
D0 = N’ 176 400 65 460 5430 150 —176400 108000 — 11370 450| 6
8 j— 16500 — 5430 — 3 25 16500 — 11370 3000 —14017
G50 150 — 25 — 3 — 30 450 — 140 8) s
1 2 3 4 5 G i S
1176600 227640 19320 500 —11760006 237640 —19320  700) 1
1 227640 216600 22140 1000 — 227640 11Gi0 2820 —300{2
e T ag 19320 22140 2920 148 — 10320 — 2520 950 — 733
! 700 1600 143 S —560 — 300 B — 514 :
o 1170000 —227040 — 19326 —700 1176000 — 227640 10320 —700] 5 f
:m=.;_3 227 640 11640 — 2820 —300 — 227640 216000 —22140 1000| 6 %
sl 19320 23520 950 73 19 320. — 22140 2620 — 14817
700 — 340 — 13 — 3 —1700 1600 — 148 s) 8
|
1 2 P 4 5 G 7 s '>
5251680 078480 086s0 <500 1234500 — 411450 53800 — 3126) 1
1 978450 237600 26460 1206 411480 — 134250 17910 — 990{ 2
I Fede 03640 26400 3056 156 55800 — 17010 2338 — 1203
4 596 1296 156 3 3126 — 990 129 — 7l
o L | 1236800 411480 353800 3126 5251080 —0T3450 98040 —4506) 5
Poo = x| — 411480 — 134250 —17010 —990 —078430 237000 — 26400  1296|6
¥il 55300 17910 2858 129 98 640 — 20460 3096 — 136l 7
— 3126 — 990 — 120 — 7 — 4596 1296 — 136 s) 8
i 02'
R L. 3 79 .
f Bias fp=T260 s 20 1 $40  —180 20  —1)
. <78
Q e
Ny =5.7-8:0.11+13 50 = 12972 960; 036 = 18- 52
where
= (bl’ bza D [’0‘*’1) (309)

represents a matrix with p + 1 columns and 20 = /n rows, Consequently, the in-

tegrals (1,16) and (1.17) have been transformed into

G,

— [ gE) B* pO(E) pO(E) - B d = B* G, B (3.10)
0

be 7,(8) VONE) v (&) dE

13



with ; |
0, = e’f (&) PUAE) pO(§) - dE (3.11)

and . ’
t=[r@ V() ds = [ r(E) B* p(&) ds = B* (3.12)!

with 1 :
b = [ r(s) pe®) ds - (3.13)

Then, the computational scheme for the matrices @,, and the vector t will have

the form

. —2 & ‘ :
[ — 1)
2*0‘\ v 9,9 2|°‘ b . L*);
: -——-—20&—-}
» | !
S N GRS I B D S B WA .
' | i

i

Since all matrices @v are symmetrical, only their right-hand upper portion need:
be calculated, Similarly, calculation of the last rows is not necessary since

they are anyway eliminated in forming the gradient.

Lo Computation of the Matrices @V and the Vector Y

Calculation of the matrices §,, with the elements
1
hv,"k = hv.ki = b[gv(f) H?')(E) Hg)(é) df 1 (l{,.l )
and of the vector § with the components
1

hi = [ ) Hi(®) dt (4.2)

is especially simple if the functions gv(g) and r(£) are polynomials in €:
gv(§)=.(lv0'1+glv'5+gv2§2"'+@vle‘, 7‘ (th)

14



T(§)=rol+r15+r2§2+r.7§1~ (LL'L')

This is so, since then

1 1 1 . :
hods = gpo [ HO HO dE + g,y [ § HOHP dE + - - + g, [ & HY HP dg , (4.5)
, i , !
i 1 B | 1 i
hy=ry [Hid§ +~r fEH dE+ -+ 1y [EH dE, 6 |
i 0 0 6 (L. ):
and thus, ‘ |
':Qv»= (hv,ik) = Hvo '\;%o + 1 S;)vl I o/ M @v! ’ | (ll,o'?) }

D =) =rohg+rh+---+1;0;. : (L 8)

20 20 20 2¢
The integral matrices$ 50, 10, Poo and the vector h, are given in Tables II
and IIT for @ =1, 2, 3, L*., For example, according to Table II the element

becomes

1
¢ 6, 8, . 44 —44.6 1
hojss = | Hy Hydf = = (—6) =2 1
‘“‘f el =N, Y =57 516 210"
0

If the functions g, and r are no polynomials in £ but are sufficiently ex- [;55
actly - possibly, piecewise - replaceable by such (for example, again by Hermiteé
polynomials), readymade integral matrices can be used also in this case; in thei
opposite case, the integration must be performed exactly or in first approxima--

tion.

5., The Eigenvalue X Occurring in the Boundary Conditions

In holohomogeneous problems, the eigenvalue A may occur linearly in the

boundary condition and thus at most quadratically in the equivalent energy 1=

~

= E; + T, . Consequently, the eigenvalue equation (1.26) assumes the form

Lzya=[M + 2 M, =2 M) — AR, =49, =2 N)]a=0), : (5.1)

i.e., the coefficients s, of the characteristic polynomial (1.27) have now be-

"

come rational functions of A:

¥ Additional matrices will be published later (Bibl.2)

15



R(A) — ARG = 5(2) A2 4+« + 5,(A) A2 + 5,(2) A + 50(2) = 0. (5.2)
Since the argument functions v,(x) are admissible for any parameter value X - |
for the true eigenvalues A, they even become exact comparison functions -~

eq.{1.28) is transformed into the more comprehensive statement:

and any value of A (5-3)i
rA W__‘_/
A-J " /

{

- AL0A)

A2 2 . ‘ / )

|
|

~

|
|
o
|
é

& — — — A
o————+

Fig.5 Characteristic Curves A;(2)

The p curve branches of the two-parametric eigenvalue problem (5.1) thus are
limited downward by the wanted eigenvalues A, (see also Fig,5). Their extreme

values relative to A are obtained from the necessary condition

d4 _ .
F=d=0. (5.4)
Consequently, if we differentiate eq.(5.2) implicitly for A and immediately
put A = 0, we obtain

3(A) A0 A4+ -+ 4 5y(A) A2 A $,(A) A+ 5,(A) = 0. (5.5)
Next, the pair of equations (5.2) and (5.5) is multiplied successively by A,

£, ..., Ap"l, yielding the homogeneous system of equations

16



Aze—1  AZe—2 203 A2 A 1
S So—1 Sgeg e 0 0 0
5 et Sz ceeiinn 0 0 0
0 S Som1 e ienan 0 0 0
gl=| o0 CO N 0 0 0 |=0, (5.6)
0 0 0 ... S 8 So
0 0 0o ....... S 08 8,/

Therefore, the vanishing of the determinant of & is a necessary condition for
the wanted parameter values A, For practical computation, © is first brought
to the upper triangular form g'by rearrangement of the rows, after which the
value ku pertaining to A, is taken from the next to the last row of éﬁ

For p =1 and p = 2, we can give the solution directly in explicit form:

4. ___30__‘;'0

g-—l. ——A-——;—-QTX, : (5:7)
Sg 8,858, 5u8;,— 8,

Q=2 —A:_i._z———;o—‘L:_o“‘l—"o_l" '
$182—88; So 82— 50 %; ' (5'8)

Here it must be considered that, in forming the difference, the highest powers
of X\ are eliminated in both numerator and denominator. If the eigenvalue A
occurs only a single time outside of the differential equation, i.e.,, if the
argument (1.,11) has the form of

Y@) = ay 0,(2) + - - - + 4, v,(x) + 4 a; v:(x) , \ (5.9)
we can put simply A a, = 8p+1 and thus obtain a p + l-row argument which no
longer contains A,

For p > 2, the described solution process is quite cumbersome; therefore,
it is more convenient to calculate the corresponding root A from eq.(5.2) for
several estimated values of )\ in the vicinity of a suspected minimum and then
to select the smallest of the resultant values as the optimum approximation

value, Another method consists in putting A = A; however, according to eq.(5.1),

17



this will lead to equations of the degree 3p in A, without yielding especially

good approximations.

6. Arguments with Less than 2n Variables a,

Up to now, we assumed that a differential equation of the order 2n is co-
brdinated with an argument containing Hermite polynomials of the order 2o = /n i
with p = 2n = « variables a;., For example, the differential equation (3.14) |
thus always leads to a system of equations with 2n = ), unknowns whose solution,\
specifically in the holohomogeneous case, is somewhat tedious, a fact which is
the more inconvenient as it is frequently desired to approximate only the
smallest eigenvalue \,; however, this can already be obtained with an ordinary
Rayleigh quotient, To decrease the nuiber of variables, either the order 2o of%
the Hermite polynomials can be reduced or they are retained and arbitrary rela-i
tions between the 2n variables a, are created; expressed differently, a new

Ritz argument is derived for the equivalent problem., Both methods will be de-~ E

scribed briefly below.

a) The Order 2¢ is Smaller than Ln

(2n-1) (2n=-1)

Here, the highest derivatives y, or yy can no longer be direct;
ly covered by the argument (1.11). However, if these derivatives also occur in
the boundary conditions (1.2) and if one does not want to restrict the computa-:
tion to only admissible functions -~ in principle, this way out is not accepted
by us in what follows ~ all necessary higher derivatives are found from eq.(2.6)

or eq.(2.8) as linear combinations of the low derivatives so that, also in this

case, the derivation of comparison functions offers no difficulty.
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b) Ritz Argument for the Eguivalent Problem

Here, we retain the order 2o = ,n but combine the p = 2n variables a,, in

a suitable manner, into o < p new variables c,:

a=@Fc - & (6.1)

with - ;
0% = (a, @y, . . ., ap; d) (6.2)

and E

= €y ooy la; d), (6.3)
where the rectangular matrix € has ¢ + 1 columns and p + 1 rows; for this |
reason, in the computational scheme (3,1L) p must be replaced by o and the
matrix 8 by the matrices TS,

In itself, one can arbitrarily dispose of the variables a, -~ for example,
equate all except one to zero - since any linear combination of comparison
functions again constitutes a comparison function, which specifically means
that the statement (1.28) remains valid for any selection of a;., However, use-~
ful numerical results are obtained only if the information given by the posed
problem (1.1), (1.2) is exhausted more than before: The simplest way is to do
this by continuous differentiation of the differential equation (1.l) which
then, together with the boundary conditions (1.2), will yield arbitrarily many
boundary conditions with higher than 2n - l-th derivatives; these, however,
according to egs.(2.6) and (2.8) are known linear combinations of the boundary
values (1.3), which means that the wanted relations between the 2n variables a,
are found., This procedure even permits to select the order 20 of the Hermite
polynomials higher than Ln (as in the example No.2), so that now even a single-
term argument permits raising the accuracy to as high a value as desired, In-
cidentally, this constitutes a method known and proved valuable for long in

special cases as Minsertion of an iteration™,

19



Another type of linear combination becomes possible if the solution of [iég
a differential equation is available in the exact or approximate form and if |
the same problem is to be solved again with slightly modified values, as is
frequently the case in technical problems, Then, the 2« boundary derivatives |
§f the known solution are used as "framework™ for the modified problem, yieldiné
rather satisfactory results in general by using only a single-term argument é
(Rayleigh quotient). Such frameworks or matrices can be used advantageously
also if a problem with Hermite polynomials of a certain order - or else with
arbitrary different argument functions - had been calculated and if the order
is to be increased subsequently. This yields not only better results but the
calculation also is freed of all rounding-off and computational errors made in %
the first passage.

Finally, it should be mentioned that, in symmetric problems (as in the
example No.l), the calculation can always be subdivided into a symmetricalréﬁd .

an antimetric component by a suitable combination of the variables a;. |

7. Arguments with More than 2n Variables a,

If, in the holohomogeneous case, more than the first 2n eigenvalues 1, aref
to be approximated, eq.(1.27) must be of the degree p > 2n. This is achieved
simplest by subdividing the field of the length 4 into 2, 3, ..., f regions

2n=1 4t the interfaces,

and by requiring a steady transition of y, y', y"...¥
In this manner, eq.(l.26) becomes a system of equations of the order 4n, 6n,
ese 2fn which now permits the calculation of correspondingly many approximation‘

values A, # \,, However, since multifield problems will be discussed only in a

later report (Bibl.2), discussion of this method will be postponed until then,
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8. Examples

Example 1%, Given is the differential equation
By — Gy + oy =0
ﬁith constant coefficients g, g,, g, and the boundary conditions
z)o =Yy =7y1 =y’ ~0.

The corresponding energy expressions are

1 1 1
20T, = .f/zdf YrRdE + g [y2dE - gy [y2de; Ty =0.
0 0 .

Thus, the equivalent energy, in accordance with eq.(1.20), will be
2T = a* (s Gz + 11 Org + 90 Goo) @, |
from which, as a finite transformation of eq.(8.1), it follows that

grad IT= (92 Oy + g7 Grg + g0 Boo) 0 =0 . }

First Approximation

(8.1)

(8.2)

(8.3)

(8.4)

(8.5)

We will put an argument with Hermite polynomials of the sixth order ac-

cording to eq.(2.5):
6 6 [ 6 6 [
Y(&) = yo Hy(§) + yo ILAE) =~ yo Hy(€) + yy HE) + y1 Hy(8) + yp” Hy(§)

of which, because of eq.(8.2), only the two polynomials Hp and Hg remain:

6 6
Y(&) = yo HoA&) + y; Hy(&)

(8.6)

(8.7)

which means that the elements with the index pairs 22, 25, 52, and 55 must be

. :
singled out from the matrices §,,; according to Table II, this will yield

92 (384 216\ 44 [ 288 —18\ 1 [ 832 ——532}0=0 j
Ne % \o1s 384 T N {18 2o88) ' N, ''\—532 832 ’

or, in combined form,

% A1l examples are taken from the thesis by G.Brine (Bibl.3).
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N, \42768 g, —

4 (76032 . + 3168 g, - 208 g,

o

198 ¢, — 133 ¢,

The determinant of this matrix has the form

3

NG)Z ju

[
I/

=] l{:!=(1’—b’=((t+b)((1—-b)=0

and, consequently, resolves into the two factors

Second Approximation

a4 b=118800¢, + 2970 ¢, &~ 759, =10,
a—b= 33204¢,+ 3366 ¢, +-311¢,=0.

12768 g, — 1989, — 133 g\ _
76032 g, + 3168 9, + 208 g,

|

H
'

(8.8)

(8.9)3

(8.10)

(8.11)

Next, we put the argument with Hermite polynomials of the eighth order:

B S 8
y(¢) = Yo £1:(E) — yy"" Hy(&) -+ U Hy(&) + i

tre 8
Hy($) ,

(8.12)

where we have already canceled Yo, J8, ¥1, YT according to eq.(8.2). Therefore,

the following four quantities will now be varied:

’
a =g, ”22.1/6”‘

I
‘73=U1,

Xy

a; =y,

|

(8.13)

8 8 8
Thus, in the matrices $,0, $30, and §,,, only the first, third, fifth, and

seventh rows and columns must be eliminated, thus directly yielding the equiva—‘

lent problem (8.5); we then have

108 000
936 480
Vgg = ——
=7, 68400
150
216 000
_ 18 1000
o = Ny 11 640
— 300
237 600
1 1206
V) = o
U = ¥ s | 134280
—990

22

480

68400 130
150 —3
108000 480 |’
480 8
11640 —300
— 300 —5
216000 1000
1 000 8
—134280 —990
— 990 —7
237660 1296
1296 8

(8.1L)

(8.15)

(8.16)



Because of the holosymmetry of the boundary conditions (8.2), the problem can
be resolved into a symmetric portion with

ey tee

Yo=—1U and Jo =—h ‘ (8017)

and into an antimetric portion with

LA 2l |

Yoo} (8.18)

- yl"
o Q
Yo= Ml an o

(see also Fig.,6)., In this manner, two multirow matrix triples are obtained

which, each separately, approximate the first and third or the second and fourth

Afﬂ%
]0/ -_-://I/I

7

Yo ¥f

jizg;”——~\\\\s
4 E2;>'//

Fig.,6 Symmetric and Antisymmetric Rigenfunctions
for Example No,l

eigenvalue; results are given in Table IV,

Third Approximation

Again, we use the argument (8,12) but make also use of the fact that, in

addition to eq.(8.2), the following is valid because of eq.(8.1):
= =0 (8.19)

in order to express the two variables y¥' and yU' by yb and y}. First, eq.(2,6)

according to Table I yields

(8.20)

rree 8* o
.1/0 = ‘11 f4 6‘)
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8 8
where {4, represents the fourth column of the coefficient matrix f, namely,

3 - - 2 5 1\ | ‘
*=(—35 —20 —5 —= 33 —15 2> __~ 8,21
:,(3:) 20\033‘) 15 - 6)' (8.21)
8
Using the vector 3% (2.7)
= v owow ow U yi")\ (8.22)
eq.(8.20), because of eq,(8,2) will read, in a more extensive form, [162
2 ree - ’ 1 ree
.'/6”'=4!(-—20!15—§!10 —Bh—Fh >=0- ’ (8.23)
Next, eq.(2.8) is utilized
rees b 3 . p‘ ’ tery
B =AW with 0= gl g — B p —v g —n) L (8.2L)

in accordance with eq.(2,9), Together with eq.(8.21) and based on eqs,(8.2)
and (8,19), this will yield

9 ,,,¢«~l'__}‘11",">=0' \
U,,n :__,;1(?_0”; Y B v lle TG ! (8.25)
n

It is then easy to calculate from egs,(8.23) and (8,25):

tre

gl = — 26y, - 10015y = — 16y, —26 45, (8.26)
which, substituted in eq,(8.12), yields the argument function
3 8 3 8 8 8
y(&) =y, (1—1,—-26 H,—16 118) + U1 (—- 16 Hy + H,—26 H,) (8.27)

with the two variables a, = y§, a, = y} and thus the matrix (3.9)

1 0 1 0 —26 0 0 0 ——16) \
%*=(bf)=(() 00 —16 0 1 0 —26/ (8.28)
by means of which the final transformation matrices
[ @%:‘“*520%=<83200 49100\ 936
: 19100 83200/ N’ :
| 6= 23*.\;3105=< 1/6“896 — 2764 18 (8.29)
, — 2764 176 896/ N
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l 0)0() == B* '\300 \‘B =

o

203520 — 124140\ 1 !
— 124140 203520/ N

can be calculated, The determinant
A =10, U 4+ ¢; Ui + o Ugol =0 | (8.30) ‘

because of the double symmetry, is resolved as in eq.(8.9) into the two equa-

tions

(8.31)

31917600 g, — 3233880 g, -+ 327660 g = 0,
123832800 ¢, + 3134376 ¢, - 79380 ¢, = 0.

For a better comparison, the approximations (8.10), (8.11), (8.31), and the
first two solutions obtained from egs.(8.1L) - (8.16), were divided by the

factor at g,; see Table IV, The exact solution reads
Y@ =sinnmé with g(nn)* + (2P + g, =0 for n=1,2,3,..., co. (8.32)v

Aside from this, egs.(8.1) and (8.2) contain numerous technically important
problems such as the elastically supported beam harmonically vibrating under

constant pressure (two-parametric eigenvalue problem).

TABLE IV

APPROXTMATION VALUES AND EXACT SOLUTION FOR EXAMPLE NO.1

By = Y+ gy =0 1 n=tl n=2
Ch=yi=y=yi=0 o 0 7 T " o
1}‘- withay = g5, 4y = 3} 97.348 387 | 9.870 068 1 1584.0000 | 39.600 000 P
1:';.- witha, = 53, a5 = ¥} 97.410731 | 9.869 621 1 1560.0000 | 39.485714 1

l?g witha, = yq, a3 = yi™,

‘ a6y =yl a5 =y}’ 97.400 137 | 9.860 046 1 1558.6304 | 309478656 | 1
Exact Solution 97.409091 | 9.869 044 1 1558.5455 | 39.478418 | 1
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Example 2, Given is the differential equation [163

(8.33)

with the boundary conditions
=0, =0 \ (8.34)
The corresponding variational problem reads
1
1 :
I, = 7)‘} W*+ y*—2y)df > Extremum , (8.35)
2 .
and the exact solution is
£) = _‘L%}ﬁ= 351 015 727 — 0.324 027 137 &
g =1 ol 0,351 915 727 — 0,324 027 137 ¢ (8.36)

— 0,027 002 262 $ — 0,000 900 075 ;‘“’ — 0,000 016 073 $¥ —-....
Despite the fact that an argument with the cubic polynomials ﬁ,(g) would be
sufficient for including the boundary conditions (8.3&), we will perform a two-
term argument with Hermite polynomials of the order 2¢ = 8, In this case, of
the eight boundary derivatives in eq.(3.5), because of eq.(8.3L), only two will
vanish first; in order to eliminate four additional derivatives of the remain-

ing six, any four relations between these will be required; we select

0 =0 o (8'37>
and i : 1

=05 o=, | (8.38)
which are equations that are readily obtained by differentiation of eq.(8.33),

i,e., from

=Y +yY =0, —yry =0
, e R i (8.39)

together with eq.(8.34). Consequently, making use of eqs.(8.34) and (8.37),

all that remains of the argument (3.5) is
- ‘ 8 ' e S 8 4 - S V
Y€)= Yo Hy(E) + 4o Hy(§) + yg H(S) -+ (— 1) Hy&) + y)'" H(E) (8.40)
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and the boundary values y§ and y;i"!, occurring here, can be eliminated then by

means of eq,(8.38) in accordance with egs.(2.6) and (2.8):

8 b - - ’ . X . i . ’ i
ye =511 6-=°"<34 Yo+ ddys+ Wy + 1y — 84y, =39y, — 7y, —.~~'li”>

1)

l rry - - i
4! -(— 35y, —20(—y) —dy — W ) 334 — 15 (— 1)

51. (84J0—LIOJ0—‘—391]1 7+

w' -

8 8
Y =4lfiw =

>,
-y Yo —

(~ 1/6"))

*)
=l (20 iS5

where we already have used the two equations (8.3L) and (8.37).

and (8,42), after a brief calculation, we obtain
260y, = — 138y, — 768 y; — 103,
260 gy = — (720 gp—4 920 y; — 1380,

Substituting this in eq.(8.40) will furnish the final argument function

{ 260 ey = A yo (65 I, — 462 F, — 1()80113) Ayl (— 192 H, + 65 H, -1230}13)
5 & (— 103 FI, — 260 I, — 1580 £1,)
- iOl'
{

Y& = oy 0,(§) -+ u v(§) - 1 - 1 (§)

in accordance with eq,(3.6), with

=4y, =1y, d=1,
[see also eq.(1.11)]. Thus, the matrix 8 (3.9) becomes
65 0 —462 0 0 0 0  —10680
1
B* = ;)W) 0 0 — 192 0 ()‘ 65> 0 —1230§,
0 0 —103 0 _0 0 —2060 —1580

after which, according to the scheme (3.1L) and Table III, the matrices
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(8.Al)§

(8.&2)5

From eqs.(8.hls

(s.zalb
(8. AA;)

(8.45)

(8.16)
[16L

(8.47)



\ o 1187877120 850702020 272609120 :
O =B* D0V =557, | S50 7020207 908333920 333836570 | (8.18)
272009 120 333 836 570 *

g , [T1712900054, —2117019396 — 1015197 984 |

-] i
o = B* Do B =555 | — 2147010306 1308908004 332102056 (8.49)%
1015197981 532102036 * |

and the vector ,

. 1 363 242 §80 |
U= Ih:TzW (—110 501 820 (8.50)
o s f

are calculated, in which case the second, fourth, fifth, and seventh rows (or
components) of the matrices §;08 and o8 (or of the vector §) are not even
needed. In addition, for symmetry reasons only five elements need be deter-
mined in egs.(8.48) and (8.49) and only two elements in eq.(8.50); the elements.
denoted by an asterisk are of no interest at all since they vanish together %

with the last rows in forming the gradient.

Then, the finite transformation of eq,(8.35) to eq,(1.15) will read

i

~ 1 ) |
Iy = + a* (@, + §y) a — a* v > Extremum, (8.51)
i.e.,

o~ 2 )
gffl&l[[k=12—(@1—f—@0)a—r=0. (8.52)

Expressed in numerals, we have

« Uy I

1 (92 SL1688704 13165386964 —00551382621\ [0 '8
260° N5 \13 165586 964 17639338624 35262633 516) - (o) ' (8.53)
The solutions
4, = 4 yo = 1.407 782 351 ; 4y =k i = — 3.046 371 93 (8.54)

are substituted in eq.(8.45), yielding

) = 0.351 9435 587 — 0.324 023 144 £ — 0.027 022 666 &

~=0.000 842 410 & — 0.000 037 367 &7 . (8.55)

A comparison with eg.(8.36) shows the exceptional quality of this approximation;

the fifth power of € is exactly canceled out and the seventh power, in the mean,
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represents the remainder of the terminated infinite series, In Table V, several
values of y(€), y'(€), and y"(€) are compiled, The function itself is repro-

duced correctly to within six places, the first derivative to within five

TABLE V

SEVERAL FUNCTIONAL VALUES FOR EXAMPLE NO.2

exact Approximation

¥(s) 0.0 0.3: 0.351'945 59
0.2 0.33 0.3358 041 37
0.4 0.209 0,299 406 56
0.5 0.231 75 0.231 754 21
0.5 0.133 269 57 0.133 269 43
1.0 0 0

¥'($) .0 1] Q
6.2 —0.130 476 66 —0.130 475 77
0.4 —0.266 159 80 —0.266 189 72
0.6 —0.412 536 08 —0.412 387 13
0.5 —0.575 540 85 —0.575 340 97
1.0 —0.761 594 135 —0.761 592 98

¥($) 0.0 —0.648 054 28 —0.648 046 29
0.2 —0,661 058 62 —0.861 058 37
0.4 —0,700 503 57 —0.700 601 39
0.6 —0.768 245 §0 —0.768 246 83
0.8 —0.,866 730 43 —0.866 721 41
1.0 —1.0 —1.0

places, and the second derivative to within four to five places,

Example 3, The following differential equation refers to the vibration
system of Fig,7:
77'11/ | /477 — 4 ‘LL 0)2 14
’ "TEJ (8.56)
with the boundary conditions
and 770=77(I)=771”=0 (8-57)
N =0@—1.-19, (8.58)
where o
. i d*w d3w 4
r=1E, =1y, L, ew o, dw dhw
w . 77 d.‘l: n ) d.)." 17] ’ d;ﬁ = 12’) N ;1;4— — 13 nr;n (8. 59)

had been assumed, The corresponding energies are
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21 _ Lt d*w 1 1 ‘
"J”k—[ﬁ({EJ(drz) dz;__m f,uw2d1,> J’luzd&-_;"(_{ﬂzdéo (8.60>
21! { :
prfli=pylent—matud) = G—1.294. (8.61)

We select Hermite polynomials of the sixth order, of which three are immediatelf

eliminated because of eq.(8.57)., This will leave

'
i

6 ) G i
WO = 0y ) + O + . (8.62)

Next, we satisfy eq.(8.58) and the auxiliary condition T§" = O which, because

of Ty = 0, follows from the differential equation, According to egs.(2.6)

é X m=‘Z,u.
1z LA
Z £7
'/j: §0=3 -
. » zj
)
w I\

Fig.7 Clamped Beam with End Load and Spring;
Example No.3

and (2,8) and Table I, this results in
dw ‘e 3 6
p(@_): =31t = =31 (=1 (=10 —6(—n)— 37" + 107y —4(— no)+—no (8.63)
’ 1 X -
=—-24(—-1077|ﬁ-ﬁﬂ“f‘“2‘7]o>=(3—"4)nl‘
[dV . s '/ - ) R S - ’ "
lJ(E{)“:’?o =4lf.‘a=-1.\14)’l‘10*.‘87/o'1“ﬁ"’lo_‘10771‘?‘7771_1771) (8.6[4,)
__4l<377 —1:)17-—77;) 0,
from which it follows that

667, = (240 — 14 (3 —i9]n; 669 =(90+33—a)n,. (8.65)
Substituting this into eq.(8.62) will yield the final argument function
4 !

n® =61, v 28, —311). L (asr,—3m) 2. 66
4= /"5 T 3 LT (8.66)
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&
N
o | = B} p() @, = by P& (8.67)
Wwith ) ) == b2 PE) a, ‘
w:("x‘):(‘) 0 62 -390 (8.68)
, and | bz/ \0 0 14 0 —3 o/ ‘
@M =m/2, d=1n-266; a*=(qa), l (8.695

in which mamner, according to eq.(5.9), the eigenvalue X\* is eliminated from /166
the argument, Thus, according to eq.(8,61) and (8.60), the equivalent ener-

gies will be

:.).I ~ - N o ‘ a9 -~
ET[ 1/,[ = (J—A‘).?,i = (l-)-—"l A‘l) (li‘ = q* ) Q1

(8.70)

with L 12—k 0 |
0 ~< 0 bj (8.71)
and “ 20 o e e o |
L ID = % (8% Dy B — A B* Dy Bya == o> va (2.72)
with o 792 (s-xo 0 )_fy'_ (52272 19 228)2_13 (7 0y A /13068 4807 ,
Ne\ 0 3969/ Ne\19228 13032/ 7 \o 33) 13860\ 1807 3 253)' (8.73)

In this case, because of the many zeros in 8 (8.68), the calculation of the two
matrices B, B or B¥HyoB according to Table II requires only 23 multiplications

each (instead of 90 in the full matrix B). If then we introduce the new para-

meter
‘- .7. A s
T 12713860 23760 (8.74)
the finite transformation of the differential equation (8.56) will read
- T
*Tj(g'—-(&)n;(‘m-—s%a:t) , (8.75)
while the determinant , , ,
sy L
— 4807¢ 33—3238¢ . (8.76)
equated to zero will yield the quadratic equation
200 091 815 ¢* — 2306 376 ¢ + 462 =0 (8.77)
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NASA TT F-9334
with the roots e;, e from which, according to eq.(8.7.), it follows that
| {'A‘ = 4,84518516; A, =-1,433637 > A, — 1483633 ; error 0,0003% ,

A = 269,026 555 ; A, = 4,049 942 = 4, == 4,032 159 ;

error (1436..'1
The exact values are solutions of the frequency equation

(8.78)
B+ B e _m_ T |
E@) + o DBy =0: cx_‘-u—l 1, p—I-;-——J..-I}.
E(3) = coshi cos A + 1 ; B(A) —coshAsinA— sinhAcosd. | (8.79).
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